3  Measurement

Jab hum data science ki baat karte hain, to pemaish ya measurement ka role bohot ahem hota hai. Is chapter mein, hum dekheinge ke kaise data science mein pemaish ke mukhtalif pehlu hote hain aur ye kyun zaroori hai. πŸ“πŸ“Š

3.1 Importance of Measurement

Data science mein, measurement ka role bohot ahem hota hai. Agar hum kisi cheez ko measure nahi kar sakte, to hum us cheez ko analyze bhi nahi kar sakte. Is liye, measurement bohot zaroori hai.

Data ki Sifaat ka Taayun (Determining Data Quality):

Measurement se hum data ki accuracy, reliability, aur validity ka taayun karte hain. Yeh samajhna zaroori hai ke aap jo data use kar rahe hain wo qabile bharosa aur durust hai. πŸ“ŠπŸ”¬

Misal ke taur par, agar aap ek research kar rahe hain jisme aap logon se unke khane ke adat ke bare mein sawalat pooch rahe hain. Yahan, aapko yeh dekhna hoga ke jawabat kitne sahi hain, kya log sach bol rahe hain, ya unke jawabat mein kuch bias to nahi hai. πŸ½οΈπŸ“‹

Measurement Scales aur Unka Istemal:

Har type ka data alag tarah se measure kiya jata hai aur iske liye alag scales hoti hain. Ye scales hain: nominal, ordinal, interval, aur ratio. Har ek ka apna unique faida aur istemal hai. πŸ“πŸ“

Jaise, nominal scale mein hum cheezon ko naam se pehchante hain, masalan, kisi survey mein mard ya aurat ke options. Ordinal scale mein, hum order ya darja bandi karte hain, jaise, hotel reviews mein stars. Interval scale mein koi fix zero point nahi hota, masalan, temperature. Aur ratio scale mein fixed zero point hota hai, jaise, kisi cheez ka wazan ya lambai. βš–οΈπŸŒ‘οΈ

3.2 Scales/Levels of Measurement πŸ“πŸ“Š

Pemayesh Ke Paimane ya Darje

Measurement scales, ya pemayesh ke paimane, data science mein data ko categorize aur analyze karne ka ek basic framework faraham karte hain. Har scale data ki mukhtalif kism ke properties ko measure karta hai aur iska apna unique use hota hai.

3.2.1 Nominal Scale (Nam Ka Paimana):

  • Definition: Nominal scale sab se basic level ka measurement scale hai. Is mein data ko categories mein divide kiya jata hai, lekin in categories mein koi numeric order ya value nahi hoti.
  • Example: Jaise, a survey mein logon ki nationality ya unka profession poocha jata hai. Pakistani, Indian, Teacher, Doctor, etc., are examples of nominal data.
  • Use in Data Science: Data sorting aur categorization ke liye istemal hota hai, jaise customer segmentation ya demographic studies mein. 🌍πŸ‘₯

3.2.2 Ordinal Scale (Tarteebi Paimana):

  • Definition: Ordinal scale mein, data categories mein hota hai, lekin in categories mein ek specific order ya sequence hoti hai.
  • Example: Jaise, ek survey mein logon se unki education level ke bare mein poocha jata hai: Matric, Intermediate, Bachelor’s, Master’s. Yahan, har category ka ek specific order hai.
  • Use in Data Science: Data ko rank ya order mein rakhne ke liye istemal hota hai, masalan, customer satisfaction surveys mein. πŸ˜ƒπŸ“Š

3.2.3 Interval Scale (Waqt Ke Faslay Ka Paimana):

  • Definition: Interval scale numeric values ke sath aata hai, aur is mein equal intervals ya differences hote hain, lekin iska koi true zero point nahi hota.
  • Example: Temperature Celsius ya Fahrenheit mein. Yahan, 0 degrees ka matlab ye nahi ke koi temperature nahi hai; ye sirf ek point hai scale par.
  • Use in Data Science: Data mein variations ko samajhne aur analyze karne ke liye, jaise climate change studies. 🌑️🌏

3.2.4 Ratio Scale (Tanasubi Paimana):

  • Definition: Ratio scale interval scale ki tarah hota hai lekin is mein ek absolute zero point hota hai.
  • Example: Distance (meters ya kilometers mein), weight (kilograms), ya age (saal mein). Yahan, zero ka matlab hai ke us cheez ka non-existence hai.
  • Use in Data Science: Quantitative analysis aur scientific calculations ke liye, jaise physics ya engineering applications. πŸ”¬βš–οΈ
TipOutline

Is section mein, measurement ke mukhtalif scales ya darje aur unke data science mein istemal ko tafseel se samjhaya gaya hai. Har scale ke unique features aur examples ko include kiya gaya hai, taake readers ko clear understanding ho ke kaise ye scales data ko samajhne aur analyze karne mein madadgar hain. Ye section data science practitioners ke liye important hai kyun ke ye unhe guide karta hai ke kis tarah ke data ko kaise handle kiya jaye aur kis tarah ke analysis ke liye konsa scale behtar hai.

A tabulated form to describe the scales of measurement in detail:

Scale Type Definition Examples Usage in Data Science
Nominal Scale Categories without any numeric order. Differentiates by type, not quantity or order. Gender, Nationality, Occupation Used for categorizing and segmenting data, like in customer segmentation or demographic studies.
Ordinal Scale Categories with a specific order or sequence, but the intervals are not necessarily equal. Education Level, Satisfaction Ratings Used for ranking or ordering data, like in customer satisfaction surveys or educational qualifications.
Interval Scale Numeric scale with equal intervals between values, but no true zero point. Temperature (Celsius/Fahrenheit), Calendar Years Used for measuring differences and averages in data, like in climate studies or historical timelines.
Ratio Scale Similar to interval scale but with a true zero point, allowing for statements of magnitude. Weight, Height, Age, Distance Used for comprehensive quantitative analysis and scientific calculations, like in physics or engineering applications.

3.3 Data Collection and Measurement

Data Collection ke Process (The Process of Data Collection):

Data Collection Techniques: Data science mein data ikhatta karne ke mukhtalif tareeqe hote hain, jaise surveys, experiments, aur field studies. Har technique ka apna unique maqsad aur faida hota hai. πŸ“‹πŸ”

Misal ke taur par, agar aap market research kar rahe hain to aap online surveys ya focus groups ka istemal kar sakte hain. Ye aapko tezi se aur wasee range mein data faraham karta hai. Ya phir, agar aap environmental studies kar rahe hain, to field observations aur experiments zyada munasib ho sakte hain. πŸŒ³πŸ§‘β€πŸ”¬

Measurement Errors ki Samajh (Understanding Measurement Errors):

Common Errors: Data collection process mein aane wale common errors mein shamil hain sampling error, bias, aur data entry mistakes. Ye errors aapke data ke results ko significantly affect kar sakte hain. ⚠️🚫

Jaise, agar aap ek survey mein sirf aik khas age group ke logon ko include karte hain, to ye sampling bias create kar sakta hai. Ya phir, data entry mein ghalti se galat information enter ho jaye, to ye bhi results ko distort kar sakta hai. πŸ’»πŸ“‰

Errors ko Kam Karna (Minimizing Errors):

Strategies to Reduce Errors: Kuch strategies jin se aap errors ko kam kar sakte hain, jaise careful planning, diverse sampling, aur data verification processes. Is se aapka data zyada reliable aur accurate banega. πŸ“ˆβœ…

Misal ke taur par, aap pehle se hi decide kar lein ke aapki sample population kaisi hogi, taake aapke data mein diversity ho. Aur data collection ke baad, aap data verification aur cleaning process se guzar kar kisi bhi possible errors ko identify aur correct kar sakte hain. πŸ§ΉπŸ”§

3.4 Operationalization and Proxy Measures

3.4.1 Operationalization (Amliyat ka Tareeqa-kar) πŸ“‹πŸ”§

Operationalization, ya amliyat ka tareeqa-kar, ek research process ka hissa hai jisme complex concepts ko measurable form mein tabdeel kiya jata hai. πŸ“πŸ§ 

  • Tafseel: Jab hum research karte hain, to kai dafa humein abstract concepts (jaise khushi, ghurbat, ya sehat) ko quantify karna parta hai. Operationalization is process ko kehte hain jisme hum in concepts ko aise variables mein convert karte hain jo hum measure kar sakein. πŸŒπŸ’­

Misal ke taur par, agar aap β€œkhushi” ko measure karna chahte hain, to aap isay various indicators jaise life satisfaction, positive experiences, ya smile frequency ke through measure kar sakte hain. πŸ˜€πŸ“Š

  • Application: Operationalization research design mein crucial hai kyun ke yeh humein specific, measurable, aur quantifiable data provide karta hai jo humare conclusions aur analysis ko more credible banata hai. πŸ“βœ…

3.4.2 Proxy Measurement (Proxy Pemayesh) πŸ“πŸ”

Proxy measurement, ya proxy pemayesh, tab istemal hoti hai jab direct measurement mushkil ya na-mumkin ho. πŸš§πŸ“ˆ

  • Tafseel: Proxy measurement ek β€˜stand-in’ ya alternate measurement hoti hai jo asal variable ki jagah use ki jati hai. Yeh tab kiya jata hai jab asal variable ko direct measure karna mushkil ho. πŸ”„πŸ”—

Jaise, agar aap kisi mulk ki economic health measure karna chahte hain, to direct isay measure karna mushkil hai. Is ki jagah, aap GDP growth rate, unemployment rate, ya consumer spending jaise indicators ka istemal kar sakte hain as proxies. πŸ’ΉπŸ’°

  • Application: Proxy measurements research mein common hain, khaas tor par social sciences aur economics mein, jahan direct measurement ke liye resources ya access limited ho. Ye technique humein phir bhi important insights provide karti hai, albeit with some level of assumption or indirectness. πŸŒπŸ”‘

3.5 Surrogate Endpoints πŸŽ―πŸ”¬

Surrogate Endpoints, ya mutaabadil anjaam ke nuqaat, medical research aur clinical trials mein istemal hone wale aise markers hain jo barah-e-raast bemari ke anjaam ko naapne ke bajaye uske effects ya risk factors ko measure karte hain. πŸ©ΊπŸ“Š

  • Tafseel: Yeh aksar un halaton mein istemal hota hai jahan asal clinical endpoint (jaise, marz ki rok-thaam ya ilaj ki kamyabi) ko measure karna mushkil ho ya bohot waqt le. Surrogate endpoints se researchers ko jaldi aur aasaani se samajhne mein madad milti hai ke aik treatment ya dawa kitni effective hai. πŸš‘πŸ’Š

Misal ke taur par, agar ek nai dawai ka test kiya ja raha hai jo cholesterol ko kam karta hai, to researchers direct heart attacks ya strokes ki kami ko naapne ke bajaye cholesterol levels ko measure karte hain as a surrogate endpoint. Ye assumption yeh hota hai ke kam cholesterol level se heart attacks ka risk bhi kam ho jata hai. β€οΈπŸ“‰

  • Application: Surrogate endpoints zyada tar chronic diseases (jaise diabetes, hypertension) ke research mein istemal hote hain. Ye researchers ko enable karta hai ke wo tezi se aur kam resources ke sath potential treatments ki efficacy ko samjhein aur evaluate karein. πŸ“πŸ”Ž

  • Ehmiyat aur Tanqeed: Surrogate endpoints ka istemal time aur resources ki bachat to karta hai, lekin iska istemal kabhi-kabhi misleading bhi ho sakta hai. Agar surrogate endpoint aur asal health outcome ke darmiyan strong relationship na ho, to is se galat conclusions nikal sakte hain. Is liye, in endpoints ka chayan aur interpretation bohot soch-samajh ke aur scientific evidence ke sath karna chahiye. πŸ€”πŸ’‘

3.6 Quantitative and Qualitative Measurement πŸ“ŠπŸ“–

Quantitative Data ki Tafseel (Detailing Quantitative Data):

  • Definition and Examples: Quantitative data wo hota hai jo numbers mein measure kiya ja sakta hai. Is mein typically counts, percentages, ya numerical values shamil hain. πŸ“‰πŸ”’

    Misal ke taur par, ek company ki monthly sales, ek website par rozana ke visitors, ya kisi school ke students ke exam scores. Ye data humein concrete aur measurable information deta hai, jaise kitna, kitni baar, aur kis darje mein.

Qualitative Data ka Analysis (Analyzing Qualitative Data):

  • Nature and Interpretation: Qualitative data non-numeric hota hai aur ismein text, images, ya observations shamil hote hain. Is data ko samajhna aur interpret karna often zyada complex hota hai. πŸ“šπŸŽ¨

    Jaise, customer reviews, interview transcripts, ya observational notes. Ye data humein deeper insights deta hai jaise log kya sochte hain, kyun kisi cheez ko pasand ya napasand karte hain, aur unke experiences kaise hote hain.

Combining Quantitative and Qualitative Data (Dono Types ke Data ko Milana):

  • Hybrid Approach: Behtareen insights often dono types ke data ko combine kar ke milte hain. Is approach se hum both measurable outcomes aur deeper human experiences ko samajh sakte hain. πŸ€πŸ“Š

Ek retail store ka misal lein: Store quantitative data se sales trends aur popular items ko track karta hai, jabke customer interviews aur feedback se ye samajhne ki koshish karta hai ke customers kyun kisi product ko prefer karte hain ya unke shopping experience mein kya behtar kiya ja sakta hai.

3.7 Data and Types of Data πŸ“ŠπŸ“ˆ

TipWhat is Data?

Data is the raw material of data science. It is the information that we collect and analyze to gain insights and make decisions. Data can be quantitative or qualitative, and it can be collected through various methods, like surveys, experiments, or field studies. Data is the foundation of data science, and it is the basis of all data science processes and techniques.

Is liye, data science mein data ki ahmiyat bohot zyada hai. Is chapter mein, hum dekheinge ke data kya hota hai aur data ki mukhtalif types kya hain. πŸ“ŠπŸ“ˆ

Primary and Secondary data are two fundamental categories based on the source and nature of the data collection process.

3.7.1 Primary Data vs. Secondary Data

3.7.1.1 Primary Data

  • Definition: Primary data is data collected directly by the researcher for the specific purpose of their study. It is original and collected at the source.
  • Methods of Collection: Includes surveys, interviews, experiments, questionnaires, observations, and focus groups.
  • Examples:
    • A researcher conducting a survey to study consumer behavior.
    • Field experiments in environmental studies.
  • Uses:
    • Tailored to the specific needs and questions of the research.
    • Provides up-to-date and relevant data for the study.
  • Pros:
    • Specific to the researcher’s requirements.
    • More control over the data quality.
  • Cons:
    • Can be time-consuming and costly to gather.
    • Risk of bias in data collection methods.

3.7.1.2 Secondary Data

  • Definition: Secondary data refers to data that was collected by someone else for a different purpose but is used by a researcher for their study.
  • Sources: Includes government publications, websites, books, journal articles, internal records of organizations, and previously conducted studies.
  • Examples:
    • Using census data for demographic studies.
    • Analyzing data from scientific journals for a literature review.
  • Uses:
    • Useful for obtaining a broad understanding of the topic.
    • Helpful in comparing and corroborating primary data findings.
  • Pros:
    • Less expensive and less time-consuming to collect.
    • Often covers a broader scope than primary data.
  • Cons:
    • Might not be perfectly aligned with the current research needs.
    • Potential issues with relevance, accuracy, and timeliness.

3.7.2 All Types of Data

Here’s a comprehensive table of different types of data, in both English and Roman Urdu:

3.7.3 πŸ“Š Data Types - Comprehensive Guide

Ab hum data ki mukhtalif types ko detail mein samjhenge. Har type ka apna unique maqsad aur istemal hai! 🎯


NoteπŸ“‹ Primary Data (Bunyaddi Data)

English: Data collected directly by the researcher for their specific study. Original and source-based.

Roman Urdu: Data jo researcher ne apne study ke liye barah-e-raast jama kiya ho. Ye asal aur source-based hota hai.

Aspect Details
πŸ“ Examples / Misaalein Surveys, Experiments, Observations / Tajurbaat, Mushahedat
βœ… Pros / Fawaid Tailored to specific needs, Control over data quality
❌ Cons / Nuqsanat Time-consuming and costly, Potential bias in collection

πŸ’‘ Real-World Example: Agar aap students ki study habits research kar rahe hain, to aap khud survey conduct karein ge - ye primary data hai!


NoteπŸ“š Secondary Data (Saanvi Data)

English: Data collected by someone else for a different purpose but used by a researcher for their study.

Roman Urdu: Data jo kisi aur ne dusre maqsad ke liye jama kiya ho lekin aap apne research mein istemal kar rahe hain.

Aspect Details
πŸ“ Examples / Misaalein Census data, Scientific journals, Organizational records
βœ… Pros / Fawaid Less costly aur time-saving, Broader scope
❌ Cons / Nuqsanat May not perfectly fit current research needs

πŸ’‘ Real-World Example: Pakistan Bureau of Statistics ka census data use karna demographic research ke liye - ye secondary data hai!


TipπŸ”’ Quantitative Data (Adadi Data)

English: Numerical data that can be measured or counted.

Roman Urdu: Wo data jo numbers mein measure ya ginna ja sakta hai.

Aspect Details
πŸ“ Examples / Misaalein Age (Umar), Temperature (Darja-e-hararat), Sales figures
βœ… Pros / Fawaid Statistical analysis aur predictions ke liye behtareen
❌ Cons / Nuqsanat Context ko nazarandaz kar sakta hai

πŸ’‘ Real-World Example: - Students ki umar: 18, 20, 22, 25 saal - Daily temperature: 35Β°C, 40Β°C, 38Β°C


TipπŸ“– Qualitative Data (Wasfi Data)

English: Descriptive data observed but not measured numerically.

Roman Urdu: Tafseeli data jo dekha ja sakta hai lekin numbers mein measure nahi kiya ja sakta.

Aspect Details
πŸ“ Examples / Misaalein Colors (Rang), Text responses, Interview transcripts
βœ… Pros / Fawaid Gahraai aur context faraham karta hai
❌ Cons / Nuqsanat Analyze karne mein time lagta hai

πŸ’‘ Real-World Example: - Customer feedback: β€œService bohot achi thi!” - Interview responses about job satisfaction


Warning🎯 Discrete Data (Munfarid Data)

English: Numerical data with specific, countable values. Cannot take fractional values.

Roman Urdu: Numerical data jisme mukammal aur alag alag qiymat hoti hai - decimal nahi ho sakti.

Aspect Details
πŸ“ Examples / Misaalein Number of students (Talba ki tadad), Survey responses
βœ… Pros / Fawaid Ginne layak scenarios ke liye behtareen
❌ Cons / Nuqsanat Non-continuous nature ki wajah se limitations

πŸ’‘ Real-World Example: - Class mein 45 students hain (45.5 students nahi ho sakte!) - Ghar mein 3 cameras hain


WarningπŸ“ˆ Continuous Data (Mutaliq Data)

English: Numerical data that can take any value within a range, including decimals.

Roman Urdu: Numerical data jo kisi range mein kisi bhi qiymat le sakta hai, including decimal values.

Aspect Details
πŸ“ Examples / Misaalein Height (Qad), Weight (Wazan), Time (Waqt)
βœ… Pros / Fawaid Precise measurements ke liye perfect
❌ Cons / Nuqsanat Advanced measurement tools ki zarurat

πŸ’‘ Real-World Example: - Aapka qad: 5.7 feet ya 173.5 cm - Wazan: 65.3 kg


Caution🏷️ Categorical Data (Zamorri Data)

English: Data grouped into categories or groups.

Roman Urdu: Data jo categories mein group kiya gaya ho.

Aspect Details
πŸ“ Examples / Misaalein Blood type (A, B, O, AB), Brand names, Types of cuisine
βœ… Pros / Fawaid Classification aur sorting mein aasan
❌ Cons / Nuqsanat Mathematical analysis ke liye na-munasib

πŸ’‘ Real-World Example: - Blood groups: A+, B-, O+, AB+ - Pakistani cities: Karachi, Lahore, Islamabad


CautionπŸ“Š Ordinal Data (Tarteebi Data)

English: Categorical data with a clear ordering or ranking.

Roman Urdu: Categorical data jisme wazeh tarteeb ya sequence hoti hai.

Aspect Details
πŸ“ Examples / Misaalein Customer ratings ⭐⭐⭐⭐⭐, Education levels, Class ranks
βœ… Pros / Fawaid Ranking aur ordering ke liye munasib
❌ Cons / Nuqsanat Ranks ke darmiyan waqfa barabar na hona

πŸ’‘ Real-World Example: - Education: Matric < Intermediate < Bachelor’s < Master’s < PhD - Restaurant rating: 1⭐ < 2⭐ < 3⭐ < 4⭐ < 5⭐


CautionπŸ”– Nominal Data (Ismi Data)

English: Categorical data without any logical order or ranking.

Roman Urdu: Categorical data jisme koi logical tarteeb ya order nahi hota.

Aspect Details
πŸ“ Examples / Misaalein Gender, Nationality, Marital status
βœ… Pros / Fawaid Labeling ya categorizing ke liye ideal
❌ Cons / Nuqsanat Analytical use mehdood hai

πŸ’‘ Real-World Example: - Gender: Male, Female - Marital Status: Single, Married, Divorced - Colors: Red, Blue, Green (koi order nahi!)


Important⚑ Binary Data (Do-Rukni Data)

English: Data with only two possible values.

Roman Urdu: Sirf do mumkinah qiymaton wala data.

Aspect Details
πŸ“ Examples / Misaalein Yes/No, True/False, On/Off, 0/1
βœ… Pros / Fawaid Saada aur wazeh, Decision-making ke liye perfect
❌ Cons / Nuqsanat Sirf do outcomes tak mehdood

πŸ’‘ Real-World Example: - Email subscribed? βœ… Yes / ❌ No - Is customer active? True / False - Light switch: On / Off


Note⏰ Time-Series Data (Waqti Silsila Data)

English: Data points collected or recorded at regular time intervals.

Roman Urdu: Data points jo baqaida waqt ke faslay par jama kiye gaye hon.

Aspect Details
πŸ“ Examples / Misaalein Stock prices daily, Temperature readings hourly
βœ… Pros / Fawaid Trend analysis aur forecasting ke liye ideal
❌ Cons / Nuqsanat Complex analysis, time-related biases

πŸ’‘ Real-World Example: - Bitcoin price har din record karna - Karachi ka rozana temperature track karna πŸ“†


NoteπŸ“Έ Cross-Sectional Data (Ek Waqti Data)

English: Data collected at a single point in time or over a very short period.

Roman Urdu: Data jo aik specific waqt mein ya bohot hi mukhtasir muddat mein jama kiya gaya ho.

Aspect Details
πŸ“ Examples / Misaalein One-time surveys, Snapshot of sales data
βœ… Pros / Fawaid Kisi khaas lamhe ko capture karne ke liye behtareen
❌ Cons / Nuqsanat Changes over time capture nahi karta

πŸ’‘ Real-World Example: - Aik din mein sab students ka survey lena - December 2025 ki sales report πŸ“Š


NoteπŸ“… Longitudinal Data (Lambi Muddat Ka Data)

English: Data collected over a long period to analyze changes over time.

Roman Urdu: Data jo lambay waqt ke douran jama kiya gaya ho tabdeeliyon ka analysis karne ke liye.

Aspect Details
πŸ“ Examples / Misaalein 10-year health studies, Employee performance tracking
βœ… Pros / Fawaid Changes over time observe karne ke liye perfect
❌ Cons / Nuqsanat Bohot waqt lagta hai, Long-term commitment chahiye

πŸ’‘ Real-World Example: - Students ko 4 saal tak track karna (matric se graduation tak) - Company ki 10 saal ki growth analysis πŸ“ˆ


TipπŸ—ΊοΈ Spatial Data (Makani Data)

English: Data related to geographical or spatial locations.

Roman Urdu: Geographical ya spatial locations se mutaliq data.

Aspect Details
πŸ“ Examples / Misaalein GIS data, GPS coordinates, Navigation maps
βœ… Pros / Fawaid Geographical analysis aur mapping ke liye zaroori
❌ Cons / Nuqsanat Special tools aur expertise chahiye

πŸ’‘ Real-World Example: - Pakistan mein COVID cases ka district-wise map πŸ—ΊοΈ - Delivery routes optimization using GPS data


Tip🎲 Multidimensional Data (Kai Pehluon Wala Data)

English: Data with multiple dimensions or aspects, often seen in complex databases.

Roman Urdu: Kai dimensions ya aspects wala data, jo aksar pechida databases mein hota hai.

Aspect Details
πŸ“ Examples / Misaalein Business intelligence data, Data cubes
βœ… Pros / Fawaid Deep analysis aur BI ke liye behtareen
❌ Cons / Nuqsanat Complex tools aur expertise ki zarurat

πŸ’‘ Real-World Example: - Sales data by Region Γ— Product Γ— Time Γ— Customer Type - E-commerce: Orders Γ— Products Γ— Customers Γ— Dates πŸ›’


Warning🎬 Unstructured Data (Ghair-Tarteebi Data)

English: Data that doesn’t fit into conventional database structures, like text, video, or audio.

Roman Urdu: Wo data jo riwayati database structure mein fit nahi hota.

Aspect Details
πŸ“ Examples / Misaalein Videos πŸŽ₯, Audio recordings πŸŽ™οΈ, Social media posts πŸ“±
βœ… Pros / Fawaid Rich information, AI/ML applications ke liye ideal
❌ Cons / Nuqsanat Organize karna mushkil, Advanced tools chahiye

πŸ’‘ Real-World Example: - YouTube videos - WhatsApp voice messages - Twitter/X posts aur comments πŸ’¬


WarningπŸ“Š Structured Data (Tarteebi Data)

English: Highly organized data that can easily be stored and queried in a database.

Roman Urdu: Intehai tarteeb shuda data jo asaani se database mein store aur query kiya ja sakta hai.

Aspect Details
πŸ“ Examples / Misaalein Excel spreadsheets πŸ“‘, Database records, SQL tables
βœ… Pros / Fawaid Access aur manipulate karna aasan
❌ Cons / Nuqsanat Flexibility ki kami ho sakti hai

πŸ’‘ Real-World Example: - Students ki Excel sheet: Name, Roll No, Marks, Grade - Bank transactions database 🏦


WarningπŸ”€ Semi-Structured Data (Nim-Tarteebi Data)

English: A blend of structured and unstructured data, like JSON or XML files.

Roman Urdu: Structured aur unstructured data ka mixture.

Aspect Details
πŸ“ Examples / Misaalein JSON files, XML data, HTML pages
βœ… Pros / Fawaid Flexibility aur organization ka balance
❌ Cons / Nuqsanat Parse karna challenging ho sakta hai

πŸ’‘ Real-World Example:

{
  "name": "Ahmed",
  "age": 25,
  "skills": ["Python", "Data Science"]
}

3.7.4 πŸ“ Quick Summary Table

Emoji Type Key Feature
πŸ“‹ Primary Direct collection
πŸ“š Secondary Already exists
πŸ”’ Quantitative Numbers
πŸ“– Qualitative Descriptions
🎯 Discrete Countable, whole
πŸ“ˆ Continuous Any value in range
🏷️ Categorical Groups
πŸ“Š Ordinal Ranked order
πŸ”– Nominal No order
⚑ Binary Only 2 values
⏰ Time-Series Over time
πŸ“Έ Cross-Sectional One moment
πŸ“… Longitudinal Long period
πŸ—ΊοΈ Spatial Geographic
🎲 Multidimensional Multiple aspects
🎬 Unstructured No fixed format
πŸ“Š Structured Tables/databases
πŸ”€ Semi-Structured Mix of both

3.8 🎬 Video Tutorial

TipMarkDown Crash Course

Data documentation aur reporting ke liye MarkDown seekhna bohat zaroori hai:

MarkDown in 72 minutes crash course

Is course mein aap seekhenge:

  • MarkDown ki basics
  • Headers, lists, aur formatting
  • Tables aur code blocks
  • Documentation best practices

3.9 Follow us

TipFollow us

Main umeed karta hun k ap ko ye chapter ne bht kuch seekhaya ho ga, or agar sach main seekhaya hy then please do support us by sharing this book with your friends and colleagues. Also, do share your feedback with us, so that we can improve our work in future.