Assalam-o-Alaikum! 🌙 Data Science aaj ke dor mein har sohbat, har conference, aur har tech seminar ka markazi maqam hasil kar chuka hai. Lekin kya aapko maloom hai keh Data Science mein kamyabi hasil karne ke liye aapko konsi manzilat tay karni hongi? Chaliye aaj hum isi roadmap (safar-naama) ka jaiza lete hain.
1. Mabda – Kahaan Se Shuru Karein? 🤔
Sab se pehli cheez jo zaroori hai, woh hai base (mabda). Aapko programming, mathematics, aur business understanding ki basic maloomat honi chahiye.
- 🖥️ Programming: Python aur R jaise languages seekhne mein fawaid hain, lekin Python ko priority dein.
- 📊 Mathematics: Statistics aur linear algebra ke concepts samajhne honge. Yeh aapko algorithms ko behtar samajhne mein madad karega.
2. Tools aur Software Ka Intikhab 🔧
Jab aap base mazboot kar len, toh phir aapko kuch specific tools aur software ki taraf rujoo karna hoga:
- 📓 Python and Jupyter Notebook: Python code likhne aur run karne ke liye behtareen tool hai.
- 🔍 SQL: Data extraction aur database se taluqat ke liye SQL seekhein.
- 🔄 Git aur GitHub: Code versioning aur team ke sath kaam karne ke liye.
3. Data Cleaning aur Preprocessing 🧹
80% waqt is marhale par guzarta hai. Data ko saaf karna aur use analyze karne ke liye tayyar karna.
- 🐼 Pandas library (Python): Data manipulation aur cleaning ke liye.
- 📉 Data Visualization tools: Matplotlib, Seaborn ya Plotly se data ko graphical roop mein paish karna.
4. Machine Learning ke Asul aur Qawaid 🤖
Data Science ka dil machine learning hai. Yahan aapko alag alag algorithms aur unka istemal samajhna hoga:
- 📈 Supervised Learning: Linear Regression, Decision Trees, aur Neural Networks jaise techniques seekhein.
- 🌀 Unsupervised Learning: K-Means Clustering aur Principal Component Analysis jaise techniques par maharat hasil karein.
- 🧠 Deep Learning: Neural networks ke advanced concepts aur frameworks jaise TensorFlow ya PyTorch ko explore karein.
5. Mazboot Project Portfolio Tayyar Karein 📂
Sirf kitaabein padhne se kaam nahi banta. Asal dunia mein masail ka samna karein aur unhein hal karein. Projects se aapko practical tajurba milega.
6. Specialization Ka Intikhab 🎯
Data Science bohat bari field hai. Aapko kisi ek shobha (domain) mein mahir banna hoga, jaise:
- 💬 Natural Language Processing (NLP): Zubaani data ko samajhna aur process karna.
- 👁️ Computer Vision: Tasweerat aur videos ko samajhne wali AI systems develop karna.
7. Naye Technologies aur Rujhanat ka Mutalia 🌐
Data Science har waqt badalta rehta hai. Naye tools, libraries, aur techniques ka ilm rakhna zaroori hai.
8. Networking aur Jamaat mein Shirkat 🤝
Dunya bhar mein mojood Data Science communities se miltay jultay rahiye. Conferences, seminars, aur workshops mein shirkat karein.
9. Mustaqil Istemar aur Taaleem 📚
Hamesha nayi cheezein seekhte rahiye aur apni skills ko update karte rahiye.
Aakhri Khayalat 💭
Data Science ka safar aasan nahi hai, lekin agar aap is safar-naame ko mukammal tor par samajh lein aur istemar karein, toh aapko kamyabi zaroor milegi. Har marhale mein mehnat, lagan, aur istiqamat se kaam karein. Yeh safar lamba hai, lekin manzilein hasil karne ka apna hi maza hai.
Shayad aap soch rahe honge keh yeh safar bohat mushkil hai, lekin yaad rahe keh har bari kaamyaabi ke peeche mehnat hoti hai. Data Science ka ilm hasil karne se aapko na sirf rozgar mil sakta hai, balke aap dunia bhar mein mojood masail ka hal bhi talash kar sakte hain. 🌟
Khuda Hafiz aur happy learning! 🎉
thanks, nice explained
Thank you Ammar Bhai.
Allah pak bless you
done
Simple and clear .. hoping for good IA
Practical Application of Data Science is very important
waqai mn bht acha lga urdu mn pr kr q k es tra k words hm bht ziada dkhty or type krty rhty hn thank you for sharing
Great
Amazing CONTENT
Subject : libraries and extensions for data science and AI
AUTHORED BY : ASAD ULLAH
EMAIL : asadullahkhaan4@gmail.com
____________________________________
LIBRARIES IN PYTHON:
Here’s a list of the top Python libraries for statistical analysis:
1.NumPy
2.SciPy
3.Pandas
4.Stats-Models
Here’s a list of the top Python libraries for data visualization:
1.Matplotlib
2.Seaborn
3.Plotly
4.Bokeh
Here’s a list of the top Python libraries for Machine Learning:
1.Scikit-learn
2.XGBoost
3.Eli5
Here’s a list of the top Python libraries for Deep Learning:
1.TensorFlow
2.Pytorch
3.Keras
Here’s a list of the top Python libraries for Natural Language Processing:
1.NLTK
2.SpaCy
3.Gensim
Here are list of python web frameworks:
Popular Python Frameworks 2023
1. Django
2. CherryPy
3. Pyramid
4. Grok
5. TurboGears
6. Web2Py
7. Flask
8. Bottle
9. Tornado
10. BlueBream
11. Quixote
Top VS Code Extensions for Data Science AND AI :
Python
Jupyter
Git
Pylance
R
Excel viewer
Sql server
DVC
Inshallah i will follow your given roadmap.
superb
Nice explanation