Course Content
How and Why to Register
Dear, to register for the 6 months AI and Data Science Mentorship Program, click this link and fill the form give there: https://shorturl.at/fuMX6
0/2
Day-17: Complete EDA on Google PlayStore Apps
0/1
Day-25: Quiz Time, Data Visualization-4
0/1
Day-27: Data Scaling/Normalization/standardization and Encoding
0/2
Day-30: NumPy (Part-3)
0/1
Day-31: NumPy (Part-4)
0/1
Day-32a: NumPy (Part-5)
0/1
Day-32b: Data Preprocessing / Data Wrangling
0/1
Day-37: Algebra in Data Science
0/1
Day-56: Statistics for Data Science (Part-5)
0/1
Day-69: Machine Learning (Part-3)
0/1
Day-75: Machine Learning (Part-9)
0/1
Day-81: Machine Learning (Part-15)-Evaluation Metrics
0/2
Day-82: Machine Learning (Part-16)-Metrics for Classification
0/1
Day-85: Machine Learning (Part-19)
0/1
Day-89: Machine Learning (Part-23)
0/1
Day-91: Machine Learning (Part-25)
0/1
Day-93: Machine Learning (Part-27)
0/1
Day-117: Deep Learning (Part-14)-Complete CNN Project
0/1
Day-119: Deep Learning (Part-16)-Natural Language Processing (NLP)
0/2
Day-121: Time Series Analysis (Part-1)
0/1
Day-123: Time Series Analysis (Part-3)
0/1
Day-128: Time Series Analysis (Part-8): Complete Project
0/1
Day-129: git & GitHub Crash Course
0/1
Day-131: Improving Machine/Deep Learning Model’s Performance
0/2
Day-133: Transfer Learning and Pre-trained Models (Part-2)
0/1
Day-134 Transfer Learning and Pre-trained Models (Part-3)
0/1
Day-137: Generative AI (Part-3)
0/1
Day-139: Generative AI (Part-5)-Tensorboard
0/1
Day-145: Streamlit for webapp development and deployment (Part-1)
0/3
Day-146: Streamlit for webapp development and deployment (Part-2)
0/1
Day-147: Streamlit for webapp development and deployment (Part-3)
0/1
Day-148: Streamlit for webapp development and deployment (Part-4)
0/2
Day-149: Streamlit for webapp development and deployment (Part-5)
0/1
Day-150: Streamlit for webapp development and deployment (Part-6)
0/1
Day-151: Streamlit for webapp development and deployment (Part-7)
0/1
Day-152: Streamlit for webapp development and deployment (Part-8)
0/1
Day-153: Streamlit for webapp development and deployment (Part-9)
0/1
Day-154: Streamlit for webapp development and deployment (Part-10)
0/1
Day-155: Streamlit for webapp development and deployment (Part-11)
0/1
Day-156: Streamlit for webapp development and deployment (Part-12)
0/1
Day-157: Streamlit for webapp development and deployment (Part-13)
0/1
How to Earn using Data Science and AI skills
0/1
Day-160: Flask for web app development (Part-3)
0/1
Day-161: Flask for web app development (Part-4)
0/1
Day-162: Flask for web app development (Part-5)
0/1
Day-163: Flask for web app development (Part-6)
0/1
Day-164: Flask for web app development (Part-7)
0/2
Day-165: Flask for web app deployment (Part-8)
0/1
Day-167: FastAPI (Part-2)
0/1
Day-168: FastAPI (Part-3)
0/1
Day-169: FastAPI (Part-4)
0/1
Day-170: FastAPI (Part-5)
0/1
Day-171: FastAPI (Part-6)
0/1
Day-174: FastAPI (Part-9)
0/1
Six months of AI and Data Science Mentorship Program
    Join the conversation
    Najeeb Ullah 1 month ago
    done
    Reply
    Muhammad_Faizan 2 months ago
    I learned about the Architecture of Neural Networks..
    Reply
    Muhammad_Faizan 2 months ago
    ANN , CNN, RNN
    Muhammad Rameez 2 months ago
    done
    Reply
    Rana Anjum Sharif 3 months ago
    Done
    Reply
    Najeeb Ullah 4 months ago
    done
    Reply
    Shahid Umar 8 months ago
    Graphical representation of the architecture of the neural network is defined in this lecture
    Reply
    tayyab Ali 9 months ago
    I learned in this lecture about artificial Neural Networks, Convolutional Neural Networks, and Recurrent Neural Networks). and the input layer, hidden layer, or output layer.
    Reply
    Sibtain Ali 9 months ago
    I learned in this video (Artificial Neural Network, Convolutional Neural Network, and Recurrent Neural Network).
    Reply
    Sibtain Ali 9 months ago
    and 1. Input layers 2. Hidden layer 3. Output.
    Javed Ali 9 months ago
    I learned in this lecture about Architecture of neural networks, which are1-Architecture of Artificial NN ( for use ragrassion and classification tasks ) 2-Architecture of CCN ( Convolutional ) ( image recognition,video analysis,image classification ) 3-Architecture of RNN ( Recurrent ) ( sequence modeling, NLP, speech recognition )And I also learned aboutSINGLE-LAYER NEURAL NETWORKS ( which have one input and output layer )And MULTI-LAYER NEURAL NETWORKS ( which have one input and output layer and also hidden layers )ALLAH PAK aap ko sahat o aafiyat wali lambi umar ata kray aor ap ko dono jahan ki bhalian naseeb farmaey aur aap ke walid-e-mohtram ko karwat karwat jannat ata farmaye,Ameen.
    Reply
    0% Complete