Course Content
How and Why to Register
Dear, to register for the 6 months AI and Data Science Mentorship Program, click this link and fill the form give there: https://shorturl.at/fuMX6
0/2
Day-17: Complete EDA on Google PlayStore Apps
0/1
Day-25: Quiz Time, Data Visualization-4
0/1
Day-27: Data Scaling/Normalization/standardization and Encoding
0/2
Day-30: NumPy (Part-3)
0/1
Day-31: NumPy (Part-4)
0/1
Day-32a: NumPy (Part-5)
0/1
Day-32b: Data Preprocessing / Data Wrangling
0/1
Day-37: Algebra in Data Science
0/1
Day-56: Statistics for Data Science (Part-5)
0/1
Day-69: Machine Learning (Part-3)
0/1
Day-75: Machine Learning (Part-9)
0/1
Day-81: Machine Learning (Part-15)-Evaluation Metrics
0/2
Day-82: Machine Learning (Part-16)-Metrics for Classification
0/1
Day-85: Machine Learning (Part-19)
0/1
Day-89: Machine Learning (Part-23)
0/1
Day-91: Machine Learning (Part-25)
0/1
Day-93: Machine Learning (Part-27)
0/1
Day-117: Deep Learning (Part-14)-Complete CNN Project
0/1
Day-119: Deep Learning (Part-16)-Natural Language Processing (NLP)
0/2
Day-121: Time Series Analysis (Part-1)
0/1
Day-123: Time Series Analysis (Part-3)
0/1
Day-128: Time Series Analysis (Part-8): Complete Project
0/1
Day-129: git & GitHub Crash Course
0/1
Day-131: Improving Machine/Deep Learning Model’s Performance
0/2
Day-133: Transfer Learning and Pre-trained Models (Part-2)
0/1
Day-134 Transfer Learning and Pre-trained Models (Part-3)
0/1
Day-137: Generative AI (Part-3)
0/1
Day-139: Generative AI (Part-5)-Tensorboard
0/1
Day-145: Streamlit for webapp development and deployment (Part-1)
0/3
Day-146: Streamlit for webapp development and deployment (Part-2)
0/1
Day-147: Streamlit for webapp development and deployment (Part-3)
0/1
Day-148: Streamlit for webapp development and deployment (Part-4)
0/2
Day-149: Streamlit for webapp development and deployment (Part-5)
0/1
Day-150: Streamlit for webapp development and deployment (Part-6)
0/1
Day-151: Streamlit for webapp development and deployment (Part-7)
0/1
Day-152: Streamlit for webapp development and deployment (Part-8)
0/1
Day-153: Streamlit for webapp development and deployment (Part-9)
0/1
Day-154: Streamlit for webapp development and deployment (Part-10)
0/1
Day-155: Streamlit for webapp development and deployment (Part-11)
0/1
Day-156: Streamlit for webapp development and deployment (Part-12)
0/1
Day-157: Streamlit for webapp development and deployment (Part-13)
0/1
How to Earn using Data Science and AI skills
0/1
Day-160: Flask for web app development (Part-3)
0/1
Day-161: Flask for web app development (Part-4)
0/1
Day-162: Flask for web app development (Part-5)
0/1
Day-163: Flask for web app development (Part-6)
0/1
Day-164: Flask for web app development (Part-7)
0/2
Day-165: Flask for web app deployment (Part-8)
0/1
Day-167: FastAPI (Part-2)
0/1
Day-168: FastAPI (Part-3)
0/1
Day-169: FastAPI (Part-4)
0/1
Day-170: FastAPI (Part-5)
0/1
Day-171: FastAPI (Part-6)
0/1
Day-174: FastAPI (Part-9)
0/1
Six months of AI and Data Science Mentorship Program
    Join the conversation
    Muhammad_Faizan 2 weeks ago
    K-means clustering is a good algorithm but it's difficult to find the best number of clusters, also it is sensitive to outliers and the data must be scaled if we want to use K-means clustering.
    Reply
    Muhammad_Faizan 2 weeks ago
    In optimization problems, a global optima (plural: global optima) refers to the best possible solution across the entire solution space. It can be either a global minimum or a global maximum depending on whether the objective is to minimize or maximize a function.
    Reply
    Rana Anjum Sharif 3 months ago
    Done
    Reply
    Shahid Umar 7 months ago
    The complete theory of K-Means clustering. I think we should make a maximum of 20 clusters.
    Reply
    Saman Fatima 8 months ago
    Silhoutte Score : ak cluster me majood ak point apny jesy qareebee points sy kitna milta julta ha
    Reply
    Saman Fatima 8 months ago
    Other Method for Optimization of K value is Gap statistic
    Reply
    Saman Fatima 8 months ago
    the "++" in "k++" indicates a smart or improved way to pick the initial points of any cluster. EXAMPLE "Imagine you're trying to group a bunch of points on a graph into, let's say, three groups. The 'k++' thing is a smart way to decide where to start looking for these groups. Instead of just picking starting points randomly, it picks them in a way that makes sure each group gets a good head start and they're not too close to each other. It helps the computer find these groups more efficiently.
    Reply
    Mehak Iftikhar 8 months ago
    What is Global Optima?Uniqueness: In some cases, the objective function might have multiple global optima with the same best value. These are called multimodal optima.Importance: Finding the global optimum is often the ultimate goal of optimization problems, as it represents the best possible solution.Challenges: Finding the global optimum can be challenging, especially in high-dimensional search spaces with complex functions. Many optimization algorithms are only guaranteed to find a local optimum, which might not be the global one.Approaches: Several algorithms and techniques exist for global optimization, each with its own strengths and weaknesses. These include evolutionary algorithms, genetic algorithms, simulated annealing, and particle swarm optimization.
    Reply
    Danish Ammar 8 months ago
    Done
    Reply
    0% Complete