Join the conversation
done
Reply
I learned about L1 and L2 Normalization, and log transformation and revised the concepts of Standardization ( Standard Scalar, Min-Max Scalar, Max Absolute Scalar, Robust Scalar)
Reply
Done
Reply
i understand thank jazakumulah kharn
Reply
from sklearn.preprocessing import Normalizer
data = [[1, 1, 1], [1, 1, 0], [1, 0, 0]]
normalizer = Normalizer(norm='12')
print(normalizer.fit_transform(data))
showing error plz help meFile c:UsersdeLLminiconda3envspython_mlLibsite-packagessklearnutils_set_output.py:157, in _wrap_method_output..wrapped(self, X, *args, **kwargs)
155 @wraps(f)
156 def wrapped(self, X, *args, **kwargs):
--> 157 data_to_wrap = f(self, X, *args, **kwargs)
158 if isinstance(data_to_wrap, tuple):
159 # only wrap the first output for cross decomposition
160 return_tuple = (
161 _wrap_data_with_container(method, data_to_wrap[0], X, self),
162 *data_to_wrap[1:],
163 )File c:UsersdeLLminiconda3envspython_mlLibsite-packagessklearnbase.py:916, in TransformerMixin.fit_transform(self, X, y, **fit_params)
912 # non-optimized default implementation; override when a better
913 # method is possible for a given clustering algorithm
914 if y is None:
915 # fit method of arity 1 (unsupervised transformation)
--> 916 return self.fit(X, **fit_params).transform(X)
917 else:
Reply
I have done this lecture with 100% practice.
Reply
I have learned L1 and L2 with 100% practice.
Reply
L1 is used for the sum of the absolute values is 1 in each row. L2 is used for text data normalization.
Reply