Course Content
How and Why to Register
Dear, to register for the 6 months AI and Data Science Mentorship Program, click this link and fill the form give there: https://shorturl.at/fuMX6
0/2
Day-17: Complete EDA on Google PlayStore Apps
0/1
Day-25: Quiz Time, Data Visualization-4
0/1
Day-27: Data Scaling/Normalization/standardization and Encoding
0/2
Day-30: NumPy (Part-3)
0/1
Day-31: NumPy (Part-4)
0/1
Day-32a: NumPy (Part-5)
0/1
Day-32b: Data Preprocessing / Data Wrangling
0/1
Day-37: Algebra in Data Science
0/1
Day-56: Statistics for Data Science (Part-5)
0/1
Day-69: Machine Learning (Part-3)
0/1
Day-75: Machine Learning (Part-9)
0/1
Day-81: Machine Learning (Part-15)-Evaluation Metrics
0/2
Day-82: Machine Learning (Part-16)-Metrics for Classification
0/1
Day-85: Machine Learning (Part-19)
0/1
Day-89: Machine Learning (Part-23)
0/1
Day-91: Machine Learning (Part-25)
0/1
Day-93: Machine Learning (Part-27)
0/1
Day-117: Deep Learning (Part-14)-Complete CNN Project
0/1
Day-119: Deep Learning (Part-16)-Natural Language Processing (NLP)
0/2
Day-121: Time Series Analysis (Part-1)
0/1
Day-123: Time Series Analysis (Part-3)
0/1
Day-128: Time Series Analysis (Part-8): Complete Project
0/1
Day-129: git & GitHub Crash Course
0/1
Day-131: Improving Machine/Deep Learning Model’s Performance
0/2
Day-133: Transfer Learning and Pre-trained Models (Part-2)
0/1
Day-134 Transfer Learning and Pre-trained Models (Part-3)
0/1
Day-137: Generative AI (Part-3)
0/1
Day-139: Generative AI (Part-5)-Tensorboard
0/1
Day-145: Streamlit for webapp development and deployment (Part-1)
0/3
Day-146: Streamlit for webapp development and deployment (Part-2)
0/1
Day-147: Streamlit for webapp development and deployment (Part-3)
0/1
Day-148: Streamlit for webapp development and deployment (Part-4)
0/2
Day-149: Streamlit for webapp development and deployment (Part-5)
0/1
Day-150: Streamlit for webapp development and deployment (Part-6)
0/1
Day-151: Streamlit for webapp development and deployment (Part-7)
0/1
Day-152: Streamlit for webapp development and deployment (Part-8)
0/1
Day-153: Streamlit for webapp development and deployment (Part-9)
0/1
Day-154: Streamlit for webapp development and deployment (Part-10)
0/1
Day-155: Streamlit for webapp development and deployment (Part-11)
0/1
Day-156: Streamlit for webapp development and deployment (Part-12)
0/1
Day-157: Streamlit for webapp development and deployment (Part-13)
0/1
How to Earn using Data Science and AI skills
0/1
Day-160: Flask for web app development (Part-3)
0/1
Day-161: Flask for web app development (Part-4)
0/1
Day-162: Flask for web app development (Part-5)
0/1
Day-163: Flask for web app development (Part-6)
0/1
Day-164: Flask for web app development (Part-7)
0/2
Day-165: Flask for web app deployment (Part-8)
0/1
Day-167: FastAPI (Part-2)
0/1
Day-168: FastAPI (Part-3)
0/1
Day-169: FastAPI (Part-4)
0/1
Day-170: FastAPI (Part-5)
0/1
Day-171: FastAPI (Part-6)
0/1
Day-174: FastAPI (Part-9)
0/1
Six months of AI and Data Science Mentorship Program
    Join the conversation
    Waseem Ur Rehman 2 weeks ago
    DBSCAN (Density-Based Spatial Clustering of Applications with Noise
    Reply
    Muhammad Faizan 4 months ago
    In this lecture, I learned about the Unsupervised Machine Learning Algorithm DBSCAN (Density-Based Spatial Clustering Application with Noise). Here, "Density" means the Number of data points in some area. "Spatial" means density in some space. "Noise" means the data points that are not part of any cluster. DBSCAN has 3 types of points: 1. Core points 2. Boarder points 3. Outlier points / Noise. In DBSCAN, we have to give 2 values: 1. Epsilone "E" (radius of a circle) 2. MinPts (Min number of points in a circle)
    Reply
    Muhammad Asif Iqbal 5 months ago
    DBSCAN: Density(something in some space: Data points / Area) base spatial(space) clustering(divide data [oint in group) application noise(data points outside selected area).eps(epsolon: radius of circle, minpts: number of mini points within circle). eps and minpts assign by user. Hybrid model help us to find the size of radius of the circle. Type of points include Core points(if minimum points available in its distance ), border points(end point where new circle not drawn or less than minimum points available in its area), outlier points(which don't match with any data point).
    Reply
    Rana Anjum Sharif 8 months ago
    Done
    Reply
    Muhammad Rameez 8 months ago
    Done
    Reply
    Shahid Umar 1 year ago
    if data points are high and data points closely available then this algorithm can be efficient.
    Reply
    Danish Ammar 1 year ago
    Lecture done
    Reply
    0% Complete