Course Content
How and Why to Register
Dear, to register for the 6 months AI and Data Science Mentorship Program, click this link and fill the form give there: https://shorturl.at/fuMX6
0/2
Day-17: Complete EDA on Google PlayStore Apps
0/1
Day-25: Quiz Time, Data Visualization-4
0/1
Day-27: Data Scaling/Normalization/standardization and Encoding
0/2
Day-30: NumPy (Part-3)
0/1
Day-31: NumPy (Part-4)
0/1
Day-32a: NumPy (Part-5)
0/1
Day-32b: Data Preprocessing / Data Wrangling
0/1
Day-37: Algebra in Data Science
0/1
Day-56: Statistics for Data Science (Part-5)
0/1
Day-69: Machine Learning (Part-3)
0/1
Day-75: Machine Learning (Part-9)
0/1
Day-81: Machine Learning (Part-15)-Evaluation Metrics
0/2
Day-82: Machine Learning (Part-16)-Metrics for Classification
0/1
Day-85: Machine Learning (Part-19)
0/1
Day-89: Machine Learning (Part-23)
0/1
Day-91: Machine Learning (Part-25)
0/1
Day-93: Machine Learning (Part-27)
0/1
Day-117: Deep Learning (Part-14)-Complete CNN Project
0/1
Day-119: Deep Learning (Part-16)-Natural Language Processing (NLP)
0/2
Day-121: Time Series Analysis (Part-1)
0/1
Day-123: Time Series Analysis (Part-3)
0/1
Day-128: Time Series Analysis (Part-8): Complete Project
0/1
Day-129: git & GitHub Crash Course
0/1
Day-131: Improving Machine/Deep Learning Model’s Performance
0/2
Day-133: Transfer Learning and Pre-trained Models (Part-2)
0/1
Day-134 Transfer Learning and Pre-trained Models (Part-3)
0/1
Day-137: Generative AI (Part-3)
0/1
Day-139: Generative AI (Part-5)-Tensorboard
0/1
Day-145: Streamlit for webapp development and deployment (Part-1)
0/3
Day-146: Streamlit for webapp development and deployment (Part-2)
0/1
Day-147: Streamlit for webapp development and deployment (Part-3)
0/1
Day-148: Streamlit for webapp development and deployment (Part-4)
0/2
Day-149: Streamlit for webapp development and deployment (Part-5)
0/1
Day-150: Streamlit for webapp development and deployment (Part-6)
0/1
Day-151: Streamlit for webapp development and deployment (Part-7)
0/1
Day-152: Streamlit for webapp development and deployment (Part-8)
0/1
Day-153: Streamlit for webapp development and deployment (Part-9)
0/1
Day-154: Streamlit for webapp development and deployment (Part-10)
0/1
Day-155: Streamlit for webapp development and deployment (Part-11)
0/1
Day-156: Streamlit for webapp development and deployment (Part-12)
0/1
Day-157: Streamlit for webapp development and deployment (Part-13)
0/1
How to Earn using Data Science and AI skills
0/1
Day-160: Flask for web app development (Part-3)
0/1
Day-161: Flask for web app development (Part-4)
0/1
Day-162: Flask for web app development (Part-5)
0/1
Day-163: Flask for web app development (Part-6)
0/1
Day-164: Flask for web app development (Part-7)
0/2
Day-165: Flask for web app deployment (Part-8)
0/1
Day-167: FastAPI (Part-2)
0/1
Day-168: FastAPI (Part-3)
0/1
Day-169: FastAPI (Part-4)
0/1
Day-170: FastAPI (Part-5)
0/1
Day-171: FastAPI (Part-6)
0/1
Day-174: FastAPI (Part-9)
0/1
Six months of AI and Data Science Mentorship Program
About Lesson

Links to blogs:

  1. Importance of Doing EDA
  2. Missing values k Rolay
Join the conversation
Imtiaz Ahmad 1 month ago
# Function to convert sizes to MB def convert_to_mb(size): if "k" in size: value = float(size.replace("k", "")) return value / 1024 # Convert KB to MB elif "M" in size: return float(size.replace("M", "")) # Already in MB else: return None # Handle unexpected values# Apply the conversion function to the column df["Size_in_MB"] = df["Size"].apply(convert_to_mb) df.head()
Reply
Ghulam Murtaza 2 months ago
all assignments sir, # Function to convert sizes to MB def convert_to_mb(size): if 'm' in size.lower(): # Check if the value is in MB return float(size.lower().replace('m', '')) elif 'k' in size.lower(): # Check if the value is in KB return float(size.lower().replace('k', '')) / 1024 else: return None # Handle unexpected cases# Apply the conversion function to the Size column df['Size'] = df['Size'].apply(convert_to_mb) df.head()df["Price"] = df["Price"].str.replace("$","").astype(float) df['Installs'] = ( df['Installs'] .str.replace(",", "", regex=True) .str.strip() .astype(int) )
Reply
Ghulam Murtaza 2 months ago
ASSIGNMENT # Function to convert sizes to MB def convert_to_mb(size): if 'm' in size.lower(): # Check if the value is in MB return float(size.lower().replace('m', '')) elif 'k' in size.lower(): # Check if the value is in KB return float(size.lower().replace('k', '')) / 1024 else: return None # Handle unexpected cases# Apply the conversion function to the Size column df['Size'] = df['Size'].apply(convert_to_mb) df.head()
Reply
Waseem Ur Rehman 2 months ago
df['Price'] = df['Price'].str.replace('$', '')# Remove non-numeric values from the Price column df['Price'] = pd.to_numeric(df['Price'], errors='coerce')# Replace NaN values with 0 df['Price'] = df['Price'].fillna(0)
Reply
Waseem Ur Rehman 2 months ago
df['Installs'] = df['Installs'].str.replace('+', '')# Replace 'Free' values with 0 df['Installs'] = df['Installs'].replace('Free', '0')# Convert the Installs column to integer values df['Installs'] = df['Installs'].str.replace(',', '').astype(int)# Define the bins for the Installs column bins_installs = [0, 1000, 10000, 100000, 1000000]# Define the labels for each bin labels_installs = ['Few', 'Some', 'Many', 'Very Many']# Apply the binning method to the Installs column df['Installs_Binned'] = pd.cut(df['Installs'], bins=bins_installs, labels=labels_installs)
Reply
Waseem Ur Rehman 2 months ago
def convert_to_mb(size): if isinstance(size, str): if size.endswith('k'): return str(round(float(size[:-1]) / 1024, 2)) + 'M' elif size.endswith('M'): return size elif isinstance(size, float) or isinstance(size, int): return str(size) + 'M' else: return sizedf['Size'] = df['Size'].apply(convert_to_mb)
Reply
Muhammad Shoaib 3 months ago
# Replace 'Varies with device' with NaN for numerical operations df['Size'] = df['Size'].replace('Varies with device', np.nan)# Convert Size to numeric, handling 'k' and 'M' def convert_size(size_str): if pd.isna(size_str): return np.nan elif 'k' in size_str: return float(size_str.replace('k', '')) / 1024 elif 'M' in size_str: return float(size_str.replace('M', '')) else: return np.nandf['Size'] = df['Size'].apply(convert_size)# Clean 'Installs' column df['Installs'] = df['Installs'].astype(str).str.replace('+', '').str.replace(',', '') df['Installs'] = pd.to_numeric(df['Installs'], errors='coerce')#Handle 'Rating' column df['Rating'] = pd.to_numeric(df['Rating'], errors='coerce')
Reply
Muhammad Hussain 3 months ago
I have read both blogs. Both blogs are very informative.
Reply
Muhammad Zohaib 6 months ago
import numpy as np kbs = 1024 # example value in KB mbs = np.round(kbs / 1024, 2) print(mbs
Reply
shahzaib afzal 6 months ago
assignment done.
Reply
0% Complete